Is the NMDA Receptor of the CA1 Region Participated in the Amnesic Effect of Harmane?
DOI:
https://doi.org/10.21276/5tvb4989Keywords:
NMDA, D-AP7, Harmane, CA1, MemoryAbstract
Aims: In the present study, we investigated the influence of NMDA receptor agonist (N-methyl-d-aspartate) and antagonist (D-AP7) on amnesia induced by a β-carboline alkaloid, harmane.
Methodology: Animals implanted with bilateral cannulae at the CA1 regions of the dorsal hippocampus and microinjected with glutamatergic drugs. One-trial step-down was used to assess memory acquisition and then, the hole-board method to assess exploratory behaviors in adult male NMRI mice. Results: The results revealed that pre-training intra-CA1 administration of NMDA (0.5 ng/mouse) and D-AP7 (0.25 and 0.5 ng/mouse) improved and impaired memory acquisition, respectively. Also, pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) decreased memory acquisition. Furthermore, pre-training intra-CA1 injection of sub-threshold dose of NMDA (0.02 ng/mouse) reversed, while non-significant dose of D-AP7 (0.125 ng/mouse) did not change impairment of memory acquisition induced by harmane (12 mg/kg, i.p.). Conclusion: In addition, all above doses of drugs did not alter locomotor activity. These results suggest that the CA1 NMDA receptors are involved in harmane-induced amnesia.
Downloads
References
Celikyurt I. K., T. Utkan, S. S. Gocmez, A. Hudson and F. Aricioglu (2013). Effect of harmane, an endogenous beta-carboline, on learning and memory in rats. Pharmacol Biochem Behav. 103:666-71.
Nasehi M., S. Sharifi and M. R. Zarrindast (2012). Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test. J Psychopharmacol. 26:1151-61.
Splettstoesser F., U. Bonnet, M. Wiemann, D. Bingmann and D. Busselberg (2005). Modulation of voltage-gated channel currents by harmaline and harmane. Br J Pharmacol. 144:52-8.
Moura D. J., C. Rorig, D. L. Vieira, J. A. Henriques, R. Roesler, J. Saffi and J. M. Boeira (2006). Effects of beta-carboline alkaloids on the object recognition task in mice. Life Sci. 79:2099-104.
Rook Y., K. U. Schmidtke, F. Gaube, D. Schepmann, B. Wunsch, J. Heilmann, J. Lehmann and T. Winckler (2010). Bivalent beta-carbolines as potential multitarget anti-Alzheimer agents. J Med Chem. 53:3611-7.
Bonnet U., N. Scherbaum and M. Wiemann (2008). The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal neurons in vitro. Prog Neuropsychopharmacol Biol Psychiatry. 32:362-7.
Talhout R., A. Opperhuizen and J. G. van Amsterdam (2007). Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol. 17:627-36.
Albores R., E. J. Neafsey, G. Drucker, J. Z. Fields and M. A. Collins (1990). Mitochondrial respiratory inhibition by N-methylated beta-carboline derivatives structurally resembling N-methyl-4-phenylpyridine. Proc Natl Acad Sci U S A. 87:9368-72.
Przedborski S. and V. Jackson-Lewis (1998). Experimental developments in movement disorders: update on proposed free radical mechanisms. Curr Opin Neurol. 11:335-9.
Shi C. C., J. F. Liao and C. F. Chen (2001). Spasmolytic effects of three harmala alkaloids on guinea-pig isolated trachea. Pharmacol Toxicol. 89:259-64.
Maher P. and J. B. Davis (1996). The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci. 16:6394-401.
Du W., V. J. Aloyo and J. A. Harvey (1997). Harmaline competitively inhibits [3H]MK-801 binding to the NMDA receptor in rabbit brain. Brain Res. 770:26-9.
Li Y., R. Sattler, E. J. Yang, A. Nunes, Y. Ayukawa, S. Akhtar, G. Ji, P. W. Zhang and J. D. Rothstein (2011). Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology. 60:1168-75.
Gegelashvili G., M. B. Robinson, D. Trotti and T. Rauen (2001). Regulation of glutamate transporters in health and disease. Prog Brain Res. 132:267-86.
Mahmoodi G., S. Ahmadi, A. Pourmotabbed, S. Oryan and M. R. Zarrindast (2010). Inhibitory avoidance memory deficit induced by scopolamine: Interaction of cholinergic and glutamatergic systems in the ventral tegmental area. Neurobiol Learn Mem. 94:83-90.
Ghafari M., S. S. Patil, H. Hoger, A. Pollak and G. Lubec (2011). NMDA-complexes linked to spatial memory performance in the Barnes maze in CD1 mice. Behav Brain Res. 221:142-8.
Jafari-Sabet M. (2011). Involvement of dorsal hippocampal muscarinic cholinergic receptors on muscimol state-dependent memory of passive avoidance in mice. Life Sci. 88:1136-41.
Khakpai F., M. Nasehi, A. Haeri-Rohani, A. Eidi and M. R. Zarrindast (2013). Septo-hippocampo-septal loop and memory formation. Basic Clin Neurosci. 4:5-23.
Khakpai F., M. Nasehi, A. Haeri-Rohani, A. Eidi and M. R. Zarrindast (2012). Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum. Behav Brain Res. 231:1-10.
Khakpai F., M. Zarrindast, M. Nasehi, A. Haeri-Rohani and A. Eidi (2013). The role of glutamatergic pathway between septum and hippocampus in the memory formation. EXCLI Journal. 12:41-51.
Stephens M. L., J. E. Quintero, F. Pomerleau, P. Huettl and G. A. Gerhardt (2011). Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol Aging. 32:811-20.
Rezayof A., Z. Shirazi-Zand, M. R. Zarrindast and T. Nayer-Nouri (2010). Nicotine improves ethanol-induced memory impairment: the role of dorsal hippocampal NMDA receptors. Life Sci. 86:260-6.
Myers K. M., W. A. Carlezon, Jr. and M. Davis (2011). Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology. 36:274-93.
Rezvanfard M., M. R. Zarrindast and P. Bina (2009). Role of ventral hippocampal GABA(A) and NMDA receptors in the anxiolytic effect of carbamazepine in rats using the elevated plus maze test. Pharmacology. 84:356-66.
Paxinos G. and K. B. J. Franklin (2001). The Mouse Brain in Stereotaxic Coordinates. 2nd Ed Academic Press.
Nasehi M., E. Mashaghi, F. Khakpai and M. R. Zarrindast (2013). Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia. Neurosci Lett. 556:5-9.
Nasehi M., M. Jamshidi-Mehr, F. Khakpai and M. R. Zarrindast (2014). Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol Biochem Behav. 125:70-7.
Martin L., M. A. Martin and B. del Castillo (1997). Changes in acid-base equilibria of harmine and harmane inclusion complexes with cyclodextrins. Biomed Chromatogr. 11:87-8.
Nasehi M., S. Amin Yavari and M. R. Zarrindast (2013). Synergistic effects between CA1 mu opioid and dopamine D1-like receptors in impaired passive avoidance performance induced by hepatic encephalopathy in mice. Psychopharmacology (Berl). 227:553-66.
Zarrindast M. R., F. Asadi and A. Rezayof (2011). Repeated pretreatment of morphine prevents morphine-induced amnesia: A possible involvement for dorsal hippocampal NMDA receptors. Arch Iran Med. 14:32-8.
Jamali-Raeufy N., M. Nasehi and M. R. Zarrindast (2011). Influence of N-methyl D-aspartate receptor mechanism on WIN55,212-2-induced amnesia in rat dorsal hippocampus. Behav Pharmacol. 22:645-54.
de Lima M. N., D. C. Laranja, E. Bromberg, R. Roesler and N. Schroder (2005). Pre- or post-training administration of the NMDA receptor blocker MK-801 impairs object recognition memory in rats. Behav Brain Res. 156:139-43.
Zoladz P. R., A. M. Campbell, C. R. Park, D. Schaefer, W. Danysz and D. M. Diamond (2006). Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacol Biochem Behav. 85:298-306.
Mondadori C. and L. Weiskrantz (1993). NMDA receptor blockers facilitate and impair learning via different mechanisms. Behav Neural Biol. 60:205-10.
Yang M. L., P. C. Kuo, T. L. Hwang, W. F. Chiou, K. Qian, C. Y. Lai, K. H. Lee and T. S. Wu (2011). Synthesis, in vitro anti-inflammatory and cytotoxic evaluation, and mechanism of action studies of 1-benzoyl-beta-carboline and 1-benzoyl-3-carboxy-beta-carboline derivatives. Bioorg Med Chem. 19:1674-82.
Nenaah G. (2010). Antibacterial and antifungal activities of (beta)-carboline alkaloids of Peganum harmala (L) seeds and their combination effects. Fitoterapia. 81:779-82.
Hamsa T. P. and G. Kuttan (2010). Harmine inhibits tumour specific neo-vessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory mediators both in vivo and in vitro. Eur J Pharmacol. 649:64-73.
Sun P., S. Zhang, Y. Li and L. Wang (2014). Harmine mediated neuroprotection via evaluation of glutamate transporter 1 in a rat model of global cerebral ischemia. Neurosci Lett. 583C:32-36.
Du W H. J. (1997). Harmaline-induced tremor and impairment of learning are both blocked by dizocilpine in the rabbit. Brain Research 754:183-188.
Hilber P C. P. (2005). Effects of harmaline on anxiety-related behavior in mice. Physiology and Behavior. 86:164-167.
Nasehi M P. M., Nouri M, Farzin D, Nayer-Nouri T, Zarrindast MR (2010). Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. European Journal of Pharmacology. 634:77-83.
Glushkov R. G., Filenko, N.I., Mashkovskii, M.D., Andreeva, N.I., Sozinov, V.N., Sozinov, V.N., (1982). Synthesis and pharmacological activity of pyrazino-b-carboline derivetives. Plenum publishing corporation. 16:1054-1058.
Touiki K., P. Rat, R. Molimard, A. Chait and R. de Beaurepaire (2005). Harmane inhibits serotonergic dorsal raphe neurons in the rat. Psychopharmacology (Berl). 182:562-9.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Archives of BioMedical and Clinical Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors are required to sign and submit the completed “Copyright transfer Form” upon acceptance of publication of the paper. This is determined by a publishing agreement between the author and International Archives of Biomedical and Clinical Research. These rights might include the right to publish, communicate and distribute online. Author(s) retain the copyright of their work. International Archives of Biomedical and Clinical Research supports the need for authors to share, disseminate and maximize the impact of their research.