Profile and Clinical Spectrum of Congenital Heart Defects in NICU

Akash Gupta¹, Shaad Abqari¹†, Tabassum Shahab¹, MU Rabbani², S Manazir Ali¹, Uzma Firdaus¹

¹Department of Pediatrics, J. N. Medical College, AMU Aligarh.
²Centre of Cardiology, J. N. Medical College, AMU Aligarh.

ABSTRACT
Introduction: Congenital heart defects are commonest birth defects and is an important cause of mortality and morbidity in newborns. The current study was done aiming at determining profile and clinical spectrum of various congenital heart diseases (CHD) in neonatal period.

Methodology: An observational study was carried out in the NICU, Department of Pediatrics, Jawaharlal Nehru Medical College, Aligarh from Feb 2014 to Aug 2015 with the objective to determine profile of various congenital heart defects. All patients with clinical suspicion of congenital heart defect were further evaluated with echocardiography. Patients who were preterm having PDA and PFO were excluded from cases. Prevalence of various congenital heart defects was calculated. Clinical Spectrum of various congenital heart defects was observed.

Observations: Total newborns screened 238 and 52 congenital hearts defect were detected. Acyanotic heart defect contributed 67% while cyanotic heart defect contributed 23%. VSD was the most common lesion while TOF (11.5%) was commonest among cyanotic heart defects. Most of the cyanotic heart defects were detected on screening as murmur on auscultation while PDA of bigger size presented as fast breathing. In cyanotic heart, defect classical TOF presented with only murmur while TOF with PA presented as cyanosis.

Conclusion: VSD was the most common congenital heart defect detected while Tetralogy of Fallot was commonest among the cyanotic heart defects.

Keywords: CHD, profile, NICU, prevalence, cyanosis

INTRODUCTION
Congenital heart disease (CHD) is defined as a gross structural abnormality of heart or intrathoracic great vessels that is actually or potentially of functional significance.¹ It is the most common cause of major congenital anomalies, representing a major global health problem. Twenty-eight percent of all major congenital anomalies consist of heart defect.² The prevalence of congenital heart defects in neonates has been studied thoroughly and is usually reported to be 5-8/1000.³⁻⁵ Asian race is found to be more affected than non-Asian race due to high rate of consanguineous marriages.⁶ Khalil et al in a hospital based study in early 90s reported the incidence as 3.9/1000 live births.⁷ The worldwide prevalence of CHD is estimated to be 8-10 in every 1000 live births but the prevalence greatly varies between regions. Nearly 1/3rd of the congenital heart diseases (CHD) are critical requiring interventions in the first year of life.⁸ CHDs contribute to infant mortality significantly, as 7% of the neonatal deaths are due to congenital malformations, 25% of which are cardiovascular.⁹ In India, 10% of the present infant mortality may be accounted for by Congenital Heart Disease as reported by Saxena et al.¹⁰ The incidence of severe CHD requiring expert cardiology care is around 2.5-3/1000 live births.¹⁰ It is imperative to have clear information of the
disease burden for proper distribution of the resources.

MATERIALS AND METHODS
In this observational study, all children suspected of congenital heart disease presenting to Pediatric Nursery/NICU, on the basis of history and clinical examination were included. All children were then screened through ECG and Chest X-ray and the diagnosis was confirmed by Echocardiography. On the basis of echocardiography, profile of various congenital heart defects was studied.

A suspected case was defined as
i. Any child with spo2<93% at room air/or visible cyanosis
ii. Unexplained CHF
iii. Murmur
iv. Abnormal ECG
v. Abnormal heart sounds
vi. Abnormal Blood Pressure
vii. Differential Peripheral pulses
viii. Abnormal chest X-Ray

RESULTS
Total numbers of inborn newborn (live birth) were 5911 during the study period. Out of which 238 were screened and 52 were found to have CHD. Pretermers with PDA or PFO were excluded. Prevalence of CHD was found to be 8.79/1000 live births during the study period. Out of which 238 were screened and 52 were found to have CHD. Preterms with PDA or PFO were excluded. Prevalence of CHDs was 8.79/1000 live birth. It was more contributed 33% of total case diagnosed. We found ASD as the commonest lesion followed by TGA. Prevalence of TOF in our study was 11.53% which found even higher prevalence of 15/1000 live births. In our study, VSD constituted 26.93% CHDs while the study done by Khalil[7] and Hussain[12] showed higher prevalence of VSD as follows 34.8%,29% and 31.3%.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Diagnosis</th>
<th>Male n(%)</th>
<th>Female n(%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ventricular Septal Defect (VSD)</td>
<td>11(21.15%)</td>
<td>3(5.77%)</td>
<td>14(26.93%)</td>
</tr>
<tr>
<td>2.</td>
<td>Atrial Septal Defect (ASD)</td>
<td>5(9.61%)</td>
<td>6(11.53%)</td>
<td>11(21.15%)</td>
</tr>
<tr>
<td>3.</td>
<td>Patent Ductus Arteriosus (PDA)</td>
<td>3(5.77%)</td>
<td>5(9.61%)</td>
<td>8(15.38%)</td>
</tr>
<tr>
<td>4.</td>
<td>Tetralogy Of Fallot (TOF)</td>
<td>5(9.61%)</td>
<td>1(1.92%)</td>
<td>6(11.53%)</td>
</tr>
<tr>
<td>5.</td>
<td>Single Ventricle (SV)</td>
<td>5(9.61%)</td>
<td>1(1.92%)</td>
<td>6(11.53%)</td>
</tr>
<tr>
<td>6.</td>
<td>Total Anomalous Pulmonary Venous Connection (TAPVC)</td>
<td>2(3.84%)</td>
<td>1(1.92%)</td>
<td>3(5.77%)</td>
</tr>
<tr>
<td>7.</td>
<td>Pulmonary Stenosis (PS)</td>
<td>1(1.92%)</td>
<td>1(1.92%)</td>
<td>2(3.84%)</td>
</tr>
<tr>
<td>8.</td>
<td>Tricuspid Atresia (TA)</td>
<td>0</td>
<td>1(1.92%)</td>
<td>1(1.92%)</td>
</tr>
<tr>
<td>9.</td>
<td>Transposition Of Great Vessels TGA(TGA)</td>
<td>0</td>
<td>1(1.92%)</td>
<td>1(1.92%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>32(61.54%)</td>
<td>20(38.46%)</td>
<td>52(100%)</td>
</tr>
</tbody>
</table>

Most of the ASD and VSDs were detected on screening as murmurs or auscultation while large PDA presented with bounding pulses and fast breathing. However, in most cases of ASD it was an accidental detection of the defect when the child was screened for fast breathing as we don’t expect for ASD to become symptomatic in newborn period. In cyanotic heart defect, classical TOF was detected by murmur on auscultation while TOF with PA presented as cyanosis. Single ventricle with significant PS presented as fast breathing and cyanosis. TAPVC with obstructive type lesion had complaints of cyanosis and fast breathing.

DISCUSSION
Acyanotic defects contributed 67% while cyanotic contributed 33% of total case diagnosed. We found prevalence of CHDs as 8.79 / 1000 live birth. It was more than the study done by Khalil[7] who found prevalence to be 3.9/1000 live birth. But the study done by Hussain[12] in 2014 found even higher prevalence of 15/1000 live births. In our study, VSD constituted upto 26.93% CHDs while the study done by Khalil[7], Islam[11] and Hussain[12] showed higher prevalence of VSD as follows 34.8%,29% and 31.3%. We found TOF as the commonest cyanotic heart defect followed by TGA. Prevalence of TOF in our study was 11.53% which was higher than the study done by Khalil[7] and Hussain[12] which shows following prevalence of TOF 4.6%, 6% and 6.89%. In our study, TGA showed smaller contribution of 1.92% which was similar to the study of Khalil[7] and much less than the study done by Islam[11]. Most of the acyanotic defects were detected on screening as murmur while cyanotic presented mainly as cyanosis and fast breathing. The spectrum of heart defects detected were similar to previous studies, however the prevalence may not be true representative of the community as this study was done at the hospital setting. Secondly in our study only newborns suspected of heart defect on clinical basis were subjected to echo cardiology and we know many complex heart defects can be absolutely silent on clinical examination which can be missed, moreover there was a large group of newborns with pulmonary hypertension which were not considered. Ideally for true prevalence each newborn
delivered should be screened for CHD by echocardiography but practically it is not possible in a limited resource country like India where majority of deliveries are still conducted at home.

Table 4: Comparison of Prevalence and spectrum of CHD with Other Studies

<table>
<thead>
<tr>
<th>AUTHOR Year and Place of study</th>
<th>Type of Study</th>
<th>Prevalence /1000 live births</th>
<th>Number of cases</th>
<th>VSD%</th>
<th>ASD %</th>
<th>PDA %</th>
<th>TOF %</th>
<th>TGA %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khalil 7 1993 New Delhi</td>
<td>Prospective</td>
<td>3.9</td>
<td>n = 43</td>
<td>34.8</td>
<td>2.3</td>
<td>18.6</td>
<td>4.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Islam 11 2013, Bangladesh</td>
<td>Cross sectional</td>
<td>7.8</td>
<td>n = 51</td>
<td>29</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Hussain 12 2014 Rawalpindi</td>
<td>Prospective</td>
<td>15</td>
<td>n = 87</td>
<td>31.3</td>
<td>22.9</td>
<td>14.94</td>
<td>6.89</td>
<td>4.59</td>
</tr>
<tr>
<td>Our Study</td>
<td>Prospective</td>
<td>8.79</td>
<td>n = 52</td>
<td>26.93</td>
<td>21.15</td>
<td>15.38</td>
<td>11.53</td>
<td>1.92</td>
</tr>
</tbody>
</table>

CONCLUSION

VSD was the most common congenital heart defect detected while Tetralogy of Fallot was commonest among the cyanotic heart defects. Majority of the acyanotic heart defects were asymptomatic but detected on auscultation, while cyanotic heart defect with significant pulmonary artery stenosis had cyanosis and fast breathing as their presentation.

What this study adds:

1. **What is known about this subject?**
 Incidence of CHD in live births was already known.

2. **What new information is offered in this study?**
 This Study highlighted Incidence, profile and mode of presentation of various CHDs in NICU setting.

REFERENCES

How to cite this article: Gupta A, Abqari S, Shahab T, Rabbani MU, Ali SM, Firdaus U. Profile and Clinical Spectrum of Congenital Heart Defects in NICU. Int Arch BioMed Clin Res. 2016 April;2(2):25-27. DOI: 10.21276/iabcr.2016.2.2.5

Source of Support: Nil, **Conflict of Interest:** None